Dynamic Analysis of Offshore Wind Turbine Towers with Fixed Monopile Platform Using the Transfer Matrix Method

Authors

  • M Feyzollahzadeh Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran
  • M.J Mahmoodi Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran
Abstract:

In this paper, an analytical method for vibrations analysis of offshore wind turbine towers with fixed monopile platform is presented. For this purpose, various and the most general models including CS, DS and AF models are used for modeling of wind turbine foundation and axial force is modeled as a variable force as well. The required equations for determination of wind turbine tower response excited by the Morrison force are derived based on Airy wave theory. The transfer matrix is derived for each element of the tower using Euler-Bernoulli’s beam differential equation and the global transfer matrix is obtained considering boundary conditions of the tower and constructing the point matrix. The effective wave force is intended in several case studies and Persian Gulf Environmental conditions are examined for the installation of wind farms. Finally, the obtained results by the transfer matrix method are compared with the results of the finite elements method and experimental data which show good agreement in spite of low computational cost.      

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Reliability analysis of monopile offshore wind turbine support structures

We probe the reliability of monopile support structures designed to support industrial scale turbines along the coastal United States using stochastic models for the wind and wave loadings, and representations of the uncertainty associated with soil properties. The turbine support structure investigated is that promulgated by the National Renewable Energy Laboratory as typical of a monopile sup...

full text

Performance based assessment of offshore wind turbine platform using the constrained new wave method

The purpose of this study is to provide a more accurate and practical method than static and spectral methods to assess the offshore wind turbines that are loaded with both wave and wind time history, the structure is evaluated by increasing the load intensity in successive steps to the stage of failure and the performance of the platform in different wave patterns are investigated. In this stu...

full text

Soil–structure reliability of offshore wind turbine monopile foundations

An overview of offshore wind turbine (OWT) foundations is presented, focusing primarily on the monopile foundation. The uncertainty in offshore soil conditions as well as random wind and wave loading is currently treated with a deterministic design procedure, though some standards allow engineers to use a probability-based approach. Laterally loaded monopile foundations are typically designed u...

full text

تحلیل ارتعاشات آزاد برج توربین بادی فراساحلی با سکوی ثابت تک شمع

Finite elements method can considerably increases the computational works of free vibration analysis of offshore wind turbine with fixed monopile platform depending on the modeling type of foundation,. In this paper, transfer matrix method is used to reduce computational works and increase the speed of analysis instead of the finite elements method. For this purpose, the wind turbine foundation...

full text

Evaluation of Turbulence on the Dynamics of Monopile Offshore Wind Turbine under the Wave and Wind Excitations

In recent years, the use of offshore wind turbines has been considered on the agenda of the countries which have a significant maritime boundary due to more speed and stability of wind at sea. The aim of this study is to investigate the effect of wind turbulence on the aero-hydrodynamic behavior of offshore wind turbines with a monopile platform. Since in the sea, the wind turbine structures ar...

full text

Effect of Platform Surge Motion on the Performance of 5MW NREL Offshore Floating Wind Turbine

In this study, an unsteady aerodynamic simulation is performed to realize the influences of platform surge motion on the aerodynamic performance of a high capacity offshore floating wind turbine. A dynamic model with pitch angle control system is utilized to propose a more realistic model of wind turbine and also achieve the rated condition of the rotor. The transient effect of platform surge m...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 1

pages  130- 151

publication date 2016-03-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023